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Abstract. In this thesis, the delay performance of slow light optical
pulses inside PCWs is considered in the linear and nonlinear propaga-
tion regime from both a theoretical and an application point of view. It
is numerically shown that for rates of 40Gb/s and 100Gb/s, nonlinear
solitary pulses experience less broadening than the linear case and can
therefore be used to obtain larger delays. The storage capacity of slow
light PCWs is maximized using a systematic procedure based on the op-
timization of various parameters of the structure. Moreover, approximate
analytical expressions for the estimation of the degenerate four-wave mix-
ing (FWM) conversion efficiency in slow-light PCWs are presented. The
derived formulas incorporate the different effective modal areas and the
frequency-dependent linear and nonlinear parameters of the pump, sig-
nal, and idler waves. The influence of linear loss, two-photon absorption,
and free-carrier generation is also accounted for. We discuss the opti-
mization of PCWs for FWM applications, taking into account linear loss
and free-carrier effects. Suitable figures of merit are introduced in order
to guide us through the choice of practical, high-efficiency designs requir-
ing relatively low pump power and small waveguide length. Promising
waveguide designs are identified, altering some structural parameters.
These designs are identified using an optimization process taking into ac-
count sophisticated figure-of merits that depend on the pump bandwidth
and the signal/pump tunability. We also present alternative designs that
are less efficient but have smaller power requirements and are far more
compact.

Keywords: Photonic crystal waveguides, Slow-light, Four-wave mixing,
Soliton, Delay Lines.

1 Introduction

Photonic crystals are formed by periodically modulating the refractive index of
the material in all three directions. Such structures are known to prevent light
from propagating in certain directions with specified frequencies, an ability usu-
ally referred to as photonic band gap. Researchers devote a considerable amount
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of attention to photonic band gaps and with good reason. Many of the promis-
ing applications of two- and three- dimensional photonic crystals to date hinge
on the location and width of photonic band gaps. For example, a crystal with
a band gap might make a very good, narrow-band filter, by rejecting all fre-
quencies in the gap. A resonant cavity, carved out of a photonic crystal, would
have perfectly reflecting walls for frequencies in the gap. The simplest possible
photonic crystal consists of alternating layers of material with different dielec-
tric constants. A two-dimensional photonic crystal is periodic along two of its
axes and homogeneous along the third axis. Usually a two dimensional photonic
crystal is formed by embedding holes of a low refractive index material in a tri-
angular lattice, to a higher refractive index material. Another way is to form a
square lattice of dielectric columns in a lower dielectric environment. The latter
is a less attractive option because such photonic crystals experience a narrower
band gap as well as increased linear losses due to light scattering. In a practical
application, light must be confined in all three dimensions, necessitating the us-
age of a three dimensional photonic crystal, which is a dielectric structure with
periodicity along three different axes. However, a three dimensional photonic
crystal has certain weaknesses in both fabrication and practical application. In
practice it is more common to combine band gap with index guiding, creating
photonic crystal slabs. A photonic crystal slab is a hybrid structure formed by
adopting a two dimensional photonic crystal structure and confine light in the
third dimension through means of internal reflection. For example, as a photonic
crystal slab can be considered a silicon membrane embedded with holes of air
in a triangular lattice. In this case, light will be confined in the third direc-
tion by layers of a lower dielectric material above and below the slab. In case
these layers are filled with air, the photonic crystal is called air membrane PCW.

Introducing a defect in the photonic crystal, (i.e. by removing a line of holes
along the propagation direction of a photonic crystal slab), a defect mode (or
guided mode) appears inside the photonic band-gap. The localization of the
waveguide mode relies on both the band gap within the plane of periodicity and
also on index guiding in the vertical direction. One of the remarkable properties
of this mode is that at a given frequency range, propagation occurs with an
increased group index ng = c/|vg| , where vg is the group velocity (which may
be positive or negative depending on the slope of the dispersion curve) and c is
the speed of light in vacuum. This phenomenon is widely known as slow-light.

2 Slow-Light

In this dissertation an extended description of the slow-light effect is presented.
In general, slow light occurs due to large first order dispersion dk/dω arising
from the resonance of light with a material or structure, where k is the wave
number and ω is the angular frequency. The most noticeable method that uses
material dispersion in order to manipulate light is the electromagnetically in-
duced transparency (EIT). This method holds the slow-light record at 17m/s
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using Bose-Einstein Condensates (BEC). The extremely low vg in EIT only al-
lows a bandwidth of the order of kHz. For structural dispersion methods, ∆n is
defined not for a material index but for an equivalent index of mode distributing
over multiple materials that form the structure. Therefore, structural dispersion
methods have similar problems in terms of the bandwidth and dispersion, al-
though they are suitable for room temperature on-chip applications. Photonic
crystals falls into the category of structural dispersion, forming standing waves
on the Bragg condition of their periodic structure (usually called band edge)
and slow light occurs due to large first order dispersion near the Bragg condi-
tion. Presently, it is straightforward to observe experimentally a group velocity
of c/10 c/100 and a delay of 10ps order.

3 PlaneWave Expansion Mode Solver

This thesis reviews the most important numerical techniques for the solution of
partial differential equations that can be applied to obtain the band diagram,
transmission spectra and field patterns of the photonic crystal slab waveguide
(PCSW). Each numerical method has each own particular strengths and weak-
nesses. As thoroughly explained in this thesis, these numerical methods are solv-
ing the eigenvalue problem in time or frequency domain. In our calculations, we
have implemented a three dimensional plane wave expansion method mode solver
based on the minimization of the Rayleigh quotient (usign the Rayleigh-Ritz
method), which we have implemented in MATLAB. On a computer, this eigen-
equation must be discretized into N degrees of freedom using the planewave
expansion method. In general, such a discretization yields a finite generalized
eigen-problem Ax = ω2Bx, where A and B are N matrices and x is the eigen-
vector. Since the original eigen-problem is Hermitian, the discretization can be
chosen so that A and B are Hermitian and B is positive-definite. This realization
leads to iterative methods, which compute a small number p of the eigenvalues
and eigenvectors, such as the p smallest eigenvalues. There are many such meth-
ods, but they share a few critical features. Firstly, they work by taking a starting
guess for x (e.g., random numbers) and applying some process to iteratively im-
prove the guess, converging quickly to the true eigenvector. In this way, any
desired accuracy can be obtained in a small number of steps. Secondly, they
merely require you to supply a fast way to compute the matrix-vector prod-
ucts Ax and Bx. The dimensions of the supercell must be chosen carefully for
two main reasons. Firstly, must be large enough to contain the photonic crystal
defect that forms the waveguide. In addition, the supercell size must prevent
coupling with unwanted waveguides, formed by the periodic repositioning of the
supercell. Moreover, near a dielectric interface one must average the dielectric
in two different ways according to effective-medium theory, depending upon the
polarization of the incident light relative to the surface normal n̂. As stated in
this thesis, not doing so can lead to suboptimal convergence of the frequencies as
a function of N , due to the problems of representing discontinuities in a Fourier
basis. It has been shown, that using a smoothed, effective dielectric tensor near
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dielectric interfaces can circumvent these problems, and achieve accurate results
for moderate N . The desired modes (guided modes) of the photonic crystal
waveguide lie in a known frequency range (the band gap) in the interior of the
spectrum. Ideally, one would like to compute only the defect modes in the band
gap, without waste computation and memory on finding all the folded modes
below them. In this thesis, a technique for calculating only the guided mode
located inside the photonic band gap is unfolded. Applying this technique one
will see that despite the fact that much fewer eigenvalues need to be found, the
convergence is slower than before due to lack of appropriate preconditioning.
The fact that a more suitable precondintioner needs to be constructed makes
the interior eigenvalue method the less efficient choice.

4 Major Limitations of Photonic Crystals

This thesis contributes to the debate and understanding of the propagation fac-
tors limiting the applicability of photonic crystal waveguides. Slow-light in pho-
tonic crystals tends to coincide with high dispersion, which removes most of the
advantages of operating in the slow light regime and severely limits the band-
width that can be utilized. Moreover, linear losses are another issue currently
being debated. It has been proposed that losses in photonic crystal waveguides
scale as the square of the slowdown factor, S = c/vg. The dispersion effects as
well as the linear loss level is modelled and examined for PCSW. It is shown
that dispersion effects are not an intrinsic property of the structure, but sub-
ject to design. Designs based on a better understanding of slow light operation
can overcome this limitation, as already shown by several authors. Propagation
in the aforementioned slow light regime can find use in a variety of practical
applications including optical delay lines and enhanced lightmatter interaction.
Given the dispersion relation of the mode, the coefficients β2 and β3 can be easily
extracted using polynomial fitting on the dispersion relation. The group velocity
dispersion (GVD) coefficient, β2 is usually larger in the slow light regime, poten-
tially leading to significant pulse broadening, especially at high data rates. To
some extent, careful waveguide design can be applied in order to reduce the prop-
agation losses while at the same time obtain lower values of β2. The amount of
pulse broadening can be quantified in terms of the broadening factor BF, which
is defined by the ratio,

BF = σ(L)/σ(0) (1)

,where σ(x) is the root-mean-square (RMS) pulsewidth. This thesis presents
a BF study for several photonic crystal waveguide designs. The presented re-
sults suggests that GVD can cause a severe amount of broadening increasing for
higher bit rates and that TOD induced broadening is significantly less impor-
tant. This provides a first motivation for considering soliton pulses since, SPM
can compensate for GVD-induced broadening. The soliton pulse shape depends
on the sign of the GVD coefficient β2. If β2 is positive (which is the case in the
majority of the photonic crystal waveguides considered in this thesis), then dark
solitons should be launched in the structure. The input soliton pulse-width T0 is
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related to the corresponding full-width at half maximum duration, TFWHM , of
the pulse through T0 = TFWHM < 1.76. The pulse peak power P0 is determined
by the following expression, P0 = |β2|/γT 2

0 . The presented results suggest that
for the W1 waveguide, P0 is initially increasing with ng and then saturates near
ng = 15. For ng > 15, P0 slowly decreases. This behavior is a consequence of
the interplay between β2 and , which in the case of the W1 waveguide are both
increasing monotonically with ng.In the nonlinear regime, the residual pulse
broadening due to the propagation losses and TOD can be studied by numeri-
cally solving the propagation equation using the split step Fourier (SSF) method.
In order to simulate the propagation of dark solitons, measures should be taken
to prevent the truncation of the bright background of the pulse at the edges of
the SSF time window. The broadening factor can be calculated after removing
the white background from the output waveform. The presented results show
that for data rates of interest in optical networking (such as 40 Gb/s and 100
Gb/s), soliton pulses can be used to obtain significant improvement in terms of
the achievable delay and broadening level compared to linear pulses. We also
provide a comparison between the broadening factors obtained in the linear and
the nonlinear regime for data rates of 40Gb/s and 100Gb/s. It is shown that for
all waveguide designs, nonlinear propagation can be quite beneficial, especially
at 100Gb/s, increasing the delay obtained from each particular waveguide at a
given broadening factor. We also discuss the effect of varying loss level and the
benefit of launching solitons at higher peak power. Chapter 4 also highlights the
relation between the propagation losses, the achievable delay, and the amount of
pulse broadening experienced in a photonic crystal slab waveguide in both the
linear and the nonlinear regime. The propagation loss coefficient Γ is given by
the expression,

Γ = c1ρOPng + c2ρBSn
2
g (2)

This expression corresponds to the total propagation losses that encompass the
intrinsic loss, the disorder-induced scattering and the losses due to out-of-plane
propagations losses. The coefficients c1 and c2 can be extracted from measure-
ments and depend on the fabrication method, the dielectric contrast ∆ε, and the
disorder parameter σd. The scattering coefficients ρBS and ρOP encompass the
influence of the mode shape. They correspond to backscattering and out-of-plane
scattering, respectively. In the waveguide designs under consideration, we have
found that out-of-plane scattering has only marginal influence and hence can be
ignored. Assuming that ρOP ∼= 0, it is easy to relate the losses of any PCSW to
those of a standard W1 waveguide fabricated with the same index contrast and
disorder parameter, i.e.,

Γ (ng) = Γ ′(ng0)(
ng
ng0

)2
ρBS(ng)

ρBS(ng0)
(3)

where Γ (ng0) is the loss coefficient of the W1 waveguide calculated at ng = ng0
and ρ′BS(ng0) is the corresponding backscattering coefficient of the W1 waveg-
uide. This dissertation contributes also to the impact of multiple scattering in
the propagation of the pulse. Multiple scattering is the process by which the
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backscattered light is coupled back to the forward propagating mode and man-
ages to reach the output. Multiple scattering manifests as a number of random
peaks in the normalized transmission spectra of the waveguide. The measured
linewidth of the fluctuations of the transmission of a photonic crystal waveguide
is estimated to be about 10 GHz for λ = 1550nm. To illustrate the impact of
these fluctuations, we consider the spectrum of a Gaussian pulse filtered by a
randomly fluctuating transmission curve,

H(f) =
∑

Hme
j2πmf/∆f , (4)

where ∆f is the spectrum of the pulse and the index m runs as 1mNp. H(f)
corresponds to the transmission curve of a waveguide segment comparable to
the localization length. We choose Np = 16, large enough in order to produce
10-GHz-spaced fluctuations. From the presented results it is deduced that the
main pulse shape remains practically unchanged but a small part of the initial
energy gives rise to nearby trailing small amplitude pulses (as expected in the
case of a multiply backscattered signal). However, the pulse peak power and
broadening factor remain practically unchanged, suggesting that propagation
is not severely affected by this effect. The above considerations suggest that
these narrow transmission fluctuations are not expected to severely impact the
propagation of high bandwidth signals, which to a first approximation propagates
as if these fluctuations are smoothed out.

5 Photonic Crystals and Four-Wave Mixing Phenomenon

This thesis contributes also to the four wave mixing phenomenon in photonic
crystal waveguides. Four-wave mixing (FWM) is an important nonlinear phe-
nomenon that may hold the key for many signal-processing applications in future
optical networks, including wavelength conversion, signal regeneration, phase in-
version, optical switching, and optical de-multiplexing. Degenerate FWM occurs
when part of the optical power of a signal wave can be transferred to an idler
wave located at another frequency through the mediation of a strong pump wave
located at a third frequency. The efficiency of the energy exchange in this process
is larger when the phases of the three waves are matched, i.e., when φ = 2φpφsφi
is small, where φp, φs, φi denote the total phase of the pump, signal, and idler
waves, respectively. The most commonly adopted figure of merit that character-
izes FWM is the conversion efficiency defined by,

η ≡ Pi(L)

Ps(0)
, (5)

where Ps(0) is the incident signal power, and Pi(L) is the idler power at the out-
put of the waveguide of total length L. Nanophotonic slow-light structures such
as photonic crystal waveguides offer the possibility of achieving sub-wavelength
light confinement, while at the same time enhancing nonlinear effects such as
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FWM. The estimation of η can play a crucial role in the design of the waveg-
uide and guide us through the choice of several geometric, material, and signal
parameters. In the case of degenerate FWM, the evolution of the three waves is
generally described by a system of coupled ordinary differential equations. By
solving this system of equations, one can in principle estimate η. Accounting for
nonlinear losses complicates the problem, rendering the derivation of an exact
analytical expression extremely difficult. In semiconductor materials such as sil-
icon, nonlinear losses usually stem from two-photon absorption (TPA) and free-
carrier (FC) generation. Self-phase modulation (SPM), cross-phase modulation
(XPM), and dispersion should also be taken into account. Another complication
arises from the fact that the wave parameters can exhibit substantial frequency
dependence in PCWs, especially in the slow-light regime. Even if the waveguide
is designed to ensure a smooth linear loss and group index frequency depen-
dence, there is no guarantee that the nonlinear propagation parameters such as
the effective modal areas A for all three waves will be the same. In fact, recent
studies argue that SPM, XPM, and FWM may each perceive different values for
A, unlike the case of a weakly guiding dielectric fiber, where such intricacies can
be ignored. The results presented in this dissertation indicate that, the modal
areas can exhibit strong frequency dependence even inside the flat-band region
of the waveguide. It is therefore incorrect to assume the same modal area for
all three waves, especially when the detuning is larger. Also the modal areas
corresponding to each phenomenon may differ significantly in the case of large
detuning. This thesis presents approximate analytical expressions for the FWM
conversion efficiency η, when linear and nonlinear losses affect the propagation
of the three waves. The usefulness of these formulas is twofold: first they provide
significant insight into the nature of the FWM phenomenon from a theoretical
point of view. They can also provide a target optimization function that requires
much less computational time than the numerical solution of ODEs, when de-
signing the PCW for nonlinear signal-processing applications. Unlike the design
of PCWs for buffering applications, when optimizing the waveguide for FWM
applications, one must also consider a multitude of signal parameters such as the
pump-signal wavelength detuning and the incident pump power, which necessi-
tate a large number of efficiency calculations for each structure. Simple analytical
expressions can therefore speed up the optimization process. The approximate
analytical expression of the FWM conversion efficiency η, assuming that only
the nonlinear TPA loss is given by,

η = (
ωi
ωs

)(1 +
κ2

4g2
)sinh2(gL)e−αiL−2ReTiPpL. (6)

In the above equation, ωµ = 2πc/λµ where λµ is the wavelength for wave µ,
κ is the total phase mismatch and g is the parametric gain. The parameter
Ti = (2jn2ωic

−1 − βT PA)SpSiA
−1
pii where n2 is the nonlinear Kerr coefficient,

βTPA is the TPA coefficient, Sm is the slow-down factor of the m wave and Apii
is the effective modal area of the XPM. The average pump power is calculated
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by using the derived expression,

Pp =
Appp

βTPAS2
pL

ln(1 +
βTPAS

2
pPp(0)

αpAppp
[1− e−αpL]) (7)

TPA is typically accompanied by FC generation causing an additional absorption
and dispersion. As discussed by several authors, FC effects can be significantly
reduced when either a low repetition/low duration pulsed pump is used or when
an external DC field is applied driving the FCs away from the center of the
waveguide. We have compared the efficiency values obtained by the presented
expression against the numerical solution of the coupled ODE equations, with
respect to the wavelength of the signal and the idler waves. In this thesis we visu-
ally infer that overall the approximate formula provides an adequate description
for medium- to high-efficiency values, which are important from a practical point
of view. To quantify the error in the approximation, we calculated the average
error e5 and e10 between the numerical and the analytical efficiency (measured
in dB) for wavelength combinations in which the ODEs efficiency is not lower
than 5dB and 10dB compared to ηmax, respectively. We obtain e5 = 0.35dB
and e10 = 1.1dB, implying very good agreement for efficiency values of practical
interest.

If no measures are taken, the FC generation can severely limit the FWM
conversion efficiency. When FC effects are included, deriving an analytical ap-
proximation for η is much more involved. For one thing, the pump power cannot
be obtained in exact form as in the previous cases. To that end, this thesis
present two alternative methods for obtaining Pp(z), which can be used in the
estimation of η. First we may assume that the three loss types (FC absorption,
TPA, and linear loss) act independently and that the overall pump loss can be
approximated by the product of the three loss factors. This assumption leads to
the following expression for the pump power,

Pp(z) = Pp(0)
e−apz

(1 +K1z) (1 +K2z)
1/2

(8)

where we have defined the parameters K1 = Pp(0)βTPAS
2
p/Appp and K2 =

4Pp(0)
2
Re {Fp} Adopting this first-order approximation for the exponential, we

may readily obtain a closed-form formula for the average pump power:

P p =

[
2 (e1 − e0K1)

LK
3/2
1

√
K1 −K2

tanh−1
(√

K1

√
1 +K2z√

K1 −K2

)
+

2e1
√

1 +K2z

LK1K2

]L
0

, (9)

where [f(z)]
d
b = f(d)−f(b). The coefficients e0 and e1 can be obtained so that the

difference between the exponential and its first-order approximation is minimum
in the least square sense inside [0, L], in which case we find that,

e0 = 2l−10

[(
e−l0 + 2

)
+ 3l−10

(
e−l0 − 1

)]
, (10)

e1 = −6l−10 L−1
[(
e−l0 + 1

)
+ 2l−10

(
e−l0 − 1

)]
, (11)
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with l0 = apL A second alternative is to solve the pump power in the case
where the nonlinear loss is dominated by the FC absorption, i.e., Re {Fp}Pp >>
Re {Tp}, in which case the pump power is given by the following equation,

Pp(z) =
Pp(0)e−apz

(1 + δ (1− e−2apz))1/2
, (12)

where δ is given by δ = 2a−1p Re {Fp}Pp(0)
2
. Integrating with respect to z and

dividing with the waveguide length, we readily obtain the following expressions
for the average pump power and the average square pump power,

P p = − Pp(0)

apL
√
δ

{
sin−1

(
e−apL√
δ−1 + 1

)
− sin−1

(
1√

δ−1 + 1

)}
(13)

Once the pump power is obtained by either one of the two methods discussed
above, we can proceed to the estimation of the approximate efficiency. We arrive
at the expression for η0 given by,

η = li

(
ωi
ωs

)(
1 +

κ2tot
4g2

)
sinh2 (gL) , (14)

where the total phase mismatch κ is replaced by κtot, which is determined by,

κtot = κ+ Im {Fs + Fi − 2Fp}P
2

p. (15)

We validate the results obtained by the above analytical formula considering
both aforementioned methods for estimating the pump power. We compare the
FWM conversion efficiency obtained analytically against the numerical solution
with respect to the wavelength of the signal and the idler waves. The presented
results show that an overall good agreement is obtained between the numerical
and the analytical solution for medium- to high-efficiency values. The average
error for (λi, λs) combinations for which the ODE efficiency is not smaller than 5
dB than ηmax is ε5 = 0.53dB and ε5 = 0.28dB calculating the pump power with
Eq. 8 and Eq. 12, respectively. The same case for which the ODE efficiency is not
smaller than 10dB than ηmax is ε10 = 2.03dB and ε[10 = 1.95dB, respectively.
The results obtained are calculated based on state-of-the-art fast-light linear loss
levels and values of βTPA corresponding to silicon. We note that the analytical
formulas provide accurate results of the FWM conversion efficiency compared to
numerical calculations. This thesis also briefly examines how the nonlinear loss
due to FC generation and its impact on the efficiency η can be estimated in the
case of a pulsed pump. The time evolution of the FC density, NC is given by,

∂NC
∂t

=
N0 −NC

τC
(16)

, where N0 = βTPAτCS
3
pP

2
p (z, t)/2~ωpA2

ppp is the FC density in the continuous-
wave regime. We assume that the input pump signal has a period equal to T
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and is comprised of rectangular pulses and duration equal to T1. We can assume
that dispersion effects do not significantly affect the pulse shape. Therefore the
pump pulse will approximately retain its rectangular shape along the propaga-
tion length, and only its peak power will decrease because of loss. Solving the
above equation for the nth pulse period [tn, tn−1] where tn = nT , one finds that,

NC(z, t) = NC(z, tn)e−(t−tn)/τC +N0

{
e−tn/τC − e−(t−tn)/τC

}
(17)

during the on period of the pulse tn < ttn + T1 and

NC(z, t) = NC(z, tn + T1)e−(t−tn−T1)/τC , (18)

if tn+T1 < ttn+ 1. In the initial pulse periods (small n), there will be a gradual
buildup of FCs until one reaches a point where the FC density NC(z, tn) at the
start of each period will be the same regardless of n. Under this condition, one
obtains NC(z, tn+1) = NC(z, tn), and combining the two last equations, we find
that,

NC(z, tn) = N0

{
e−tn/τC − e−T1/τC

} e−(T−T1)/τC

1− e−T/τC
(19)

We can easily calculate the average carrier density Navg inside the pulse duration
and use this carrier density in the estimations of the loss coefficient. Our results
indicate that as the repetition rate becomes smaller, at some point T becomes
much larger than C , and the generated FCs have the necessary time to fully
recombine before the next pulse arrives. Therefore in this regime, NC(z, tn) '
0, and the nonlinear losses are due solely to the carriers generated inside the
current pulse period, which do not depend on T and the repetition rate. As a
consequence, the efficiency tends to remain constant at small repetition rates.
For repetition rates above 1 GHz, an exponential degradation of η is observed.
In this case, carriers generated in the previous pulse duration do not recombine
fully, and there is a buildup of carriers, which increase the nonlinear loss.

6 Design Optimization

One of the main contributions of this thesis is the study of photonic crystal
design with respect to the storage capacity. We define the storage capacity of
the photonic crystal waveguides as the ratio of the achieved delay LW /|vg| to
the bit duration 1/Rb, i.e.,

Nmax = LWRb/|vg| , (20)

where LW is the waveguide length and vg is the group velocity of the defect mode
that carries the signal. Nmax is therefore a function of Rb but also of the wave
vector k and the geometry of the waveguide superlattice. Formally we can write
Nmax = f(Rb, α, k, rα, εα, εb, h, x1, y1, r1, , xN , yN , rN ), where N is the number
of hole classes considered in the optimization, rα is the radii of the lattice holes,
α is the lattice constant, and εα and εb are the relative dielectric constants of
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the high- and low-index material, respectively. The function f is not known in
closed form, but it can be computed using a plane wave expansion eigenmode
solver to obtain the modal fields and the dispersion relation k = k(ω) of the
waveguide. We apply standard optimization methods to choose the arguments
of f in order to maximizeNmax. To estimateNmax, one must estimate LW , which
is determined by the maximum tolerable optical loss and the dispersion-induced
pulse broadening. In this thesis, we consider that the loss limit is lmax = 20dB,
which can be easily compensated by semiconductor optical amplifiers. Given the
optical loss coefficient Γ of the waveguide in dB/cm, the maximum propagation
distance due to losses is simply LΓ = lmax/Γ . We also considered the maximum
allowable length due to dispersion LB is,

LB = K
(
B2

max − 1
) 1

2

(
β2
2R

4
b +

1

4
K−1β2

3R
6
b

)− 1
2

(21)

where, β2 and β3 are the GVD and third-order dispersion coefficients respec-
tively, Bmax = 1.3 is the maximum allowable broadening factor, and K = 0.0224.
We choose the maximum propagation length LW as the minimum of LB , LΓ ,
and Lmax where Lmax = 1cm is the waveguide length limit imposed by op-
tical integration considerations. In this thesis, we also discuss how the opti-
mization procedure can be applied in order to design a PCSW delay line from
scratch, considering the effect of multiple design parameters. We choose the
standard W1 waveguide as a starting point with rα = 0.27α, and perform a
step-by-step optimization gradually increasing the number of parameters con-
sidered. Our presented results revealed a design with optimum storage capacity
Nmax = 31.3bits at ng ' 24 for ∆y1 = 0.1297α, ∆y2 = 0.0248α, ∆y3 = 0.0399α,
and ∆r1 = 0.25α, considering Rb = 40Gb/s. In the same chapter, we also ex-
amine the case of Rb = 100Gb/s, where the maximum capacity obtained was
Nmax ' 65bits at ng ' 21 for ∆y1 = 0.14α, ∆y2 = 0.025α, ∆y3 = 0.018α,
∆r1 = 0.26α.

This dissertation contributes to the definition of new figure of merits con-
cerning optimizing the photonic crystal waveguide design with respect to the
FWM phenomenon. Simply achieving a large η is not always sufficient in many
applications, since other important aspects need to be evaluated. For a given
length L and pump power P0, one should also be interested in the available
bandwidth, which can be quantified in terms of the optical pump wavelength
range ∆λ in which does not fall below a certain level (say 3 dB) of its maximum
value η0(P0, L). Tunability is another important aspect that can be quantified
as the wavelength separation δλ between the pump and the signal waves for
which η is again higher than 3dB compared to η0. We define the product of the
maximum efficiency, bandwidth, and tunability (EBT ),

= η0 ×∆λ× δλ (22)

A large EBT value should ensure a smooth wavelength dependence for η, which
is important in wavelength division multiplexing systems. Also, since modern
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trends in optical research dictate the use of compact, low-power components, we
may also use a more powerful and size-aware FoM,

EBTPL =
η0 ×∆λ× δλ

P0 × L
(23)

Optimizing the waveguide with respect to EBTPL is expected to yield shorter
structures requiring less power at the expense of a smaller overall efficiency. We
maximize the above FoMs based on an interior-point optimization method that
combines a direct method for solving the constrained maximization problem,
along with conjugate gradient steps using trust regions performed by MAT-
LABs fmincon function. In our calculations, we assume a silicon PCSW with
fixed α = 412nm, h = 0.5α while the radii of holes not included in the opti-
mization are also held fixed at rα = 0.27α. We also assume that the range of
the design parameters is 0.04α∆ri0, 0∆yi0.15α and 0.1WP02W , 25µmL510µm.
The photonic crystal waveguide design obtained by maximizing EBT FoM is
obtained for ∆y1 = 0.149α, ∆y2 = 0.099α, ∆y3 = 0.012α, Deltar1 = 0.23α,
∆r2 = 0.24α, ∆r3 = 0.27α, yielding EBT = 7.9nm2. Similarly, the optimum
photonic crystal waveguide design with respect to the EBTPL FoM is obtained
for ∆y1 = 0.151α, ∆y2 = 0.11α, ∆y3 = 0.013α, ∆r1 = 0.23α, ∆r2 = 0.27α,
∆r3 = 0.27α, yielding EBTPL = 73.9fm/W .
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